How to Apply

APPLY FOR AN ON-CAMPUS INTERVIEW

Please visit your Career Center’s online recruiting system AND the Laboratory’s website: www.ll.mit.edu/oncampus.html

Due to the unique nature of our work, we require U.S. citizenship.

Follow us on Facebook, LinkedIn, and Twitter

MIT Lincoln Laboratory’s fundamental mission is to apply science and advanced technology to critical national defense and national security problems of national security. MIT Lincoln Laboratory is an Equal Opportunity Employer and does not discriminate on the basis of race, color, religion, sex, national origin, veteran status, or disability.

This work is sponsored by the Air Force under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the United States Government.

MIT Lincoln Laboratory TECHNOLOGY IN SUPPORT OF NATIONAL SECURITY
WWW.LL.MIT.EDU

Technical Seminar Series 2014–2015
Members of the technical staff at MIT Lincoln Laboratory are pleased to present these technical seminars to interested college and university groups. Costs related to the staff member’s visit for these seminars will be assumed by Lincoln Laboratory.

AIR TRAFFIC CONTROL
- Experiences from Modeling and Exploiting Data in Air Traffic Control
- Integrating Unmanned Aircraft Systems Safely into the National Airspace System
- Radar Detection of Aviation Weather Hazards
- System Design in an Uncertain World: Decision Support for Mitigating Thunderstorm Impacts on Air Traffic Control

COMMUNICATION SYSTEMS
- Building a High-Capability Internet Protocol Airborne Backbone with Disparate Radio Technologies
- Cooperative Communication in Heterogeneous Wireless Networks
- Diversity in Air-to-Ground Lasercom: The Focal Demonstration
- Dynamic Link Adaptation for Satellite Communications
- Future Directions in Communication Systems
- High-Rate Laser Communications to the Moon and Back
- Implementation Considerations for Wideband Wireless Communications
- Providing Information Security with Quantum Physics—a Practical Engineering Perspective
- Real-Time Modeling of Wireless Networks Through Emulation
- Robust Multi-user Wireless Communications
- Waveform Design for Airborne Networks
- Worth a Thousand Bits: Visualization of Communication Network Data

HOMELAND PROTECTION
- Disease Modeling to Assess Outbreak Detection and Response

OPTICAL PROPAGATION AND TECHNOLOGY
- Mechanical Systems Engineering of Optical Sensors

RADAR AND SIGNAL PROCESSING
- Adaptive Array Detection
- Adaptive Array Estimation
- Bioinspired Resource Management for Multiple-Sensor Target Tracking Systems
- Parameter Bounds Under Missspecified Models
- Polynomial Rooting Techniques for Adaptive Array Direction Finding
- Radar Signal Distortion and Compensation with Transionospheric Propagation Paths
- Synthetic Aperture Radar

SPACE CONTROL TECHNOLOGY
- New Techniques for High-Resolution Atmospheric Sounding
- Predicting and Avoiding Close Approaches and Potential Collisions in Geosynchronous Orbits

SYSTEMS AND ARCHITECTURES
- Choices, Choices, Choices (Decisions, Decisions, Decisions)

CYBER SECURITY
- Addressing the Challenges of Big Data Through Innovative Technologies
- Content-Centric Networking for Mobile Devices
- Cross-Language Illness Tracking via Tweets
- Cyber Security Metrics
- Developing and Evaluating Link-Prediction Algorithms for Speaker Content Graphs
- Efficient, Privacy-Preserving Data Sharing
- EMBER: A Global Perspective on Extreme Malicious Behavior
- Evaluating Cyber Moving Target Techniques
- Experiences in Cyber Security Education: The MIT Lincoln Laboratory Capture-the-Flag Exercise
- Multicore Programming in pMatlab® Using Distributed Arrays
- Natural Language Learning Research and Development
- New Approaches for Automatic Speaker Recognition and Forensic Considerations
- Securing Data at Rest with Optical Physically Unclonable Functions
- Signal Processing for the Measurement of Characteristic Voice Quality
- The Probabilistic Provenance Graph

SOLID-STATE DEVICES, MATERIALS, AND PROCESSES
- Chemical Aerosol Characterization by Single-Particle Infrared Elastic Scattering
- Dynamic Photoacoustic Spectroscopy for Trace Gas Detection
- Fully Depleted Silicon-on-Insulator Process Technology for Subthreshold-Operation Ultra-Low-Power Electronics
- Geiger-Mode Avalanche Photodiode Arrays for Imaging and Sensing
- Hardware Phenomenological Effects on Co-Channel Full-Duplex MIMO Relay Performance
- Integrated Optics in Silicon
- Metamaterials and Plasmonics Research at MIT Lincoln Laboratory
- Microfluidics at MIT Lincoln Laboratory
- Optical Sampling for High-Speed, High-Resolution Analog-to-Digital Conversion
- Pan-STARRS: Gigapixel Astronomy with Atmospheric Distortion Correction
- Quantum Information Science with Superconducting Artificial Atoms
- Slab-Coupled Optical Waveguide Devices and Their Applications
- Submicronsecond to Subnanosecond Snapshot Imaging Technology
- Subthreshold Design of FPGAs for Minimum-Energy Operation
- Three-Dimensional Integration Technology for Advanced Focal Planes and Integrated Circuits
- Toward Large-Scale Trapped-Ion Quantum Processing
- Ultrasensitive Mass Spectrometry Development at MIT Lincoln Laboratory