Evolutionary Algorithms in a Nutshell

OR

How I copied the comp.ai.genetic FAQ onto a bunch of slides at 5am this morning

Aniruddh Nath
24 Sep 2006
What are Evolutionary Algorithms?

• “A subset of evolutionary computation, a generic population-based metaheuristic optimization algorithm.” - Wikipedia

• Wuh?

• A set of biologically inspired algorithms that work on the 'survival of the fittest' principle.
Key Features

- Population
- Genetic operators (recombination, mutation)
- Reproduction
- Fitness function
- Exploration
Types of Evolutionary Algorithms

- Genetic algorithms
- Evolutionary programming
- Evolution strategies
- Genetic programming
- Learning classifier systems
Genetic Algorithms

• Search technique, often used for optimization problems.

• Population: usually a set of binary strings (“chromosomes”).

• Looking for a binary string that is exactly or approximately optimal, given a fitness function.
Pseudocode (from c.a.genetic)

t := 0;
initpopulation P (t);
evaluate P (t);
while not done do
 t := t + 1;
P' := selectparents P (t);
recombine P' (t);
mutate P' (t);
evaluate P' (t);
P := survive P,P' (t);
od
Toy Example

Give me a number as close to '42' as possible.

Representation: unsigned binary strings.

Fitness function: $f(x) = 42 - |42 - x|$

Completion condition: $f(x) > 40$.
Toy Example (cont'd)

Init: $P = \{010010, 110011, 100001\}$

Evaluate:

$f(010010) = 18$
$f(110011) = 33$
$f(100001) = 33$
Generation 1

Select parents: 110011, 100001

Recombination: we're using one point crossover. Other methods are possible.

\[
\begin{array}{c|c}
110 & 011 \\
\hline
100 & 001 \\
\end{array}
\]

\[
\begin{array}{c|c}
110001 & 110001 \\
\hline
100011 & 100011 \\
\end{array}
\]

Mutation: 111001, 100010

\[P = \{110011, 100001, 111001, 100010\}\]

Condition not met.
Generation 2

Select parents: 110011, 100010

Recombination:

\[
\begin{array}{c|c}
110 & 011 \\
100 & 010 \\
\end{array}
\quad \rightarrow
\begin{array}{c|c}
110010 \\
100011 \\
\end{array}
\]

Mutation: 010010, 101011

P = \{110011, 100010, 010010, 101011\}

\[f(101011) = 41 > 40. \text{ Done.}\]
Evolutionary Programming

• Similar idea, but not restricted to 'chromosome' structure.

• Solutions can have any structure; various mutations are possible based on how you define your solutions.

• Recombination tends not to play a role.
Evolutionary Strategy

• Uses vector of reals rather than bit string.

• Mutation: add a random value to each element of the vector.

• Recombination: take the mean of each element of the parent vector:

\[\begin{align*}
&[1.0, 2.0, 3.0], [2.0, 1.0, 4.0] \\
\rightarrow &\quad [1.5, 1.5, 3.5]
\end{align*} \]
Genetic Programming

- Solutions are actual programs, usually represented as parse trees.
- Recombination consists of programs exchanging subtrees.
- Mutation is generally not used.
- This is awesome.
Learning Classifier Systems

- Population is a set of 'binary classifiers' (if-then rules about an environment).
- Uses reinforcement learning: the environment gives the agent a reward for choosing a set of rules; agent aims to maximize award.
Problems with EAs

• Local maxima.
• Highly dependent on problem formulation.
• Not guaranteed to ever find a good solution (if you're really unlucky with your operators).
Why bother?

• Yields surprisingly good results on optimization problems.

• Example: find a pretty good way to schedule jobs on a processor (minimize waiting time).

• Scheduling problems tend to be NP-hard; cannot calculate exact solution.

• EAs can also be used to find numbers close to 42.
A Brief History of EAs

• Nils Aall Barricelli used EAs in 1954 to play a card game.

• The father of modern GAs is Prof. John Holland, at the University of Michigan.

• Prof. David Goldberg in the GE department worked with Prof. Holland, and now runs the Illinois Genetic Algorithms Laboratory (IlliGAL).
References/Further Reading

• comp.ai.genetic newsgroup.

• Wikipedia.

• Some website I found off Google: http://neo.lcc.uma.es/cEA-web/ES.htm